JITty: A Rewriter with Strategy Annotations

Jaco van de Pol

Centrum voor Wiskunde en Informatica
P.O.-box 90.079, 1090 GB Amsterdam, The Netherlands

1 Introduction

We demonstrate JITty, a simple rewrite implementation with strategy annota-
tions, along the lines of the Just-In-Time rewrite strategy, explained and justified
in [4]. Our tool has the following distinguishing features:

— It provides the flexibility of user defined strategy annotations, which specify
the order of normalizing arguments and applying rewrite rules.

— Strategy annotations are checked for correctness, and it is guaranteed that
all produced results are normal forms w.r.t. the underlying TRS.

— The tool is “light-weight” with compact but fast code.

— A TRS is interpreted, rather than compiled, so the tool has a short start-up
time and is portable to many platforms.

We shortly review strategy annotations in Section 2. JITty is available via
http://www.cwi.nl/"vdpol/jitty/ together with a small demonstrator (Sec-
tion 3) that can be used to experiment with strategy annotations. The rewrite
engine has also been integrated in the uCRL tool set [1]. Although performing a
rewrite step takes more time in JITty than in the standard compiling rewriter
of the uCRL toolset, the former is often preferred, owing to avoidance of com-
pilation time, and better normalization properties of the just-in-time strategy.
In Section 4 we emphasize certain requirements on the rewriter imposed by the
LCRL toolset. This leads to an unconventional application programmer’s inter-
face, which is described in Section 5.

2 User Defined and Predefined Strategy Annotations

A strategy annotation for a function symbol f is a list of integers and rule labels,
where the integers refer to the arguments of f (1 < i < arity(f)) and the rule
labels to rewrite rules for f, i.e., rules whose left hand side have top symbol f.
For instance, the annotation f : [1,a, 3,2] means that a term with top symbol
f should be normalized by first normalizing its first argument, then trying rule
a and f; if both fail the second argument is normalized.

To normalize correctly, a strategy annotation must be full and in-time. It is
full if all arguments and rules for f are mentioned. It is in-time if arguments are
mentioned before rules that need them. A rule needs an argument if either the
argument starts with a function symbol, or the argument is a non-linear variable.

S. Tison (Ed.): RTA 2002, LNCS 2378, pp. 367-370, 2002.
@© Springer-Verlag Berlin Heidelberg 2002

368 J. van de Pol

signature
T(0) or(2) loop(0)
F(0) and (2)
rules
al([x], and(x,T), x) o1([x], or(T,x), T) 1([1, loop, loop)
a2([x], and(x,F), F) 02([x], or(F,x), x)
default justintime
strategies
and([2,a1,a2,1])
end
rewrite(and(loop,F))
rewrite(or(T,loop))
rewrite(or (and(loop,F),or(T,loop)))
stop

Fig. 1. Boolean example of a demonstrator file.

It has been proved in [4] that if a normal form is computed under a strategy
annotation satisfying the above restrictions, then the result is a normal form of
the original TRS without strategies. Therefore JITty checks these criteria. The
following strategies are predefined: leftmost innermost, which first normalizes all
arguments, and subsequently tries all rewrite rules; and just-in-time, which also
normalizes its arguments from left to right, but tries to apply rewrite rules as
soon as their needed arguments have been evaluated.

JITty’s strategy annotations are similar to OBJ’s annotations (e.g. [3]). The
annotations of JITty are more refined, because rules can be mentioned individ-
ually, but less sophisticated, because laziness annotations are not supported.
See [4] for other rule based systems with user-controlled strategies (ELAN,
Maude, OBJ-family, Stratego).

Although, strictly speaking, evaluation can be done when strategy annota-
tions are not in-time or full, an interesting optimization can be applied if they
are. In particular, for in-time annotations we have that all subterms of a normal
form are in normal form. Hence, in a : f(g(z)) — h(z), with f : [1,a], it is
guaranteed that the argument of A will be normal, so it will not be traversed.
Therefore, JITty currently only supports “correct” annotations.

3 Simple Demonstrator

We provide a simple demonstrator, which reads a file containing a signature, a
number of rules, a default strategy, a number of user defined strategy annota-
tions, and a number of commands. It has a fixed structure, as shown in Figure 1.
The signature consists of a number of function symbols with their arity. A rule
consists of a label, a list of variables, a left hand side and a right hand side. The
default strategy should be either innermost or justintime. The default strategy
can be overwritten for each function symbol, by an annotation, being a mixed
list of integers and rule labels.

JITty: A Rewriter with Strategy Annotations 369

The commands are of the form rewrite(term), to start rewriting. The three
examples in Figure 1 are carefully chosen to terminate. Other examples may loop
for ever. After replacing justintime by innermost, the first term will terminate,
but the last two will not. The website shows more examples, such as the following
rule for division, which terminates for closed z and y by virtue of the just-in-time
strategy: div(x,y) — if(1t(x,y),0,S(div(minus(x,y),y))).

4 Embedding in the pCRL Toolset

A puCRL specification consists of an equational data theory and a process part.
The pCRL toolset [1] contains a.o. an automated theorem prover for the equa-
tional theory, and a simulator for the process part which serves as the front end
of visualization and model checking tools. Both tools depend heavily on term
rewriting in order to decide the equational theory. Therefore we need that the
strategy annotations always yield normal forms of the TRS.

The simulator has to normalize the guards of transition rules (i.e., terms
with state variables). The same guard is rewritten in many states. For efficiency
reasons, JITty maintains a current environment, which is a normalized substi-
tution. Given global environment o, rewriting a term ¢t now means to get the
normal form of t°, assuming that the substitution ¢ is normalized. This can be
exploited in the implementation: ¢ has to be traversed only once, and z7 (for
variables z in t) is not traversed at all, because it is supposed to be in nor-
mal form. The user can modify the current environment by assigning a term
to a variable, provided this term is in normal form. To resolve name conflicts,
the user can enter and leave blocks. Entering a block doesn’t change the global
environment, but leaving a block restores the previous environment.

The theorem prover is based on binary decision diagrams (BDD) with equa-
tions instead of proposition symbols. BDDs are nothing but highly shared if-
then-else trees. An important optimization, crucial when rewriting BDDs, is
that the rewriter can be put in “hash mode”. In this case, each computed result
is stored in a look-up table. So each sub-computation is performed only once.

5 Application Programmer’s Interface

JITty is implemented in the programming language C, and relies on the ATerm
library [2]. This library is supposed to have an efficient term implementation. It
guarantees that terms are always stored in maximally shared form. Moreover,
the uCRL toolset uses ATerms as well, so at term level there is no translation
between uCRL and JITty. Therefore, ATerms also show up in the Application
Programmer’s Interface of JITty, shown in Figure 2. A complete C program
using the basic functionality is shown in Figure 3.

JIT_init is used to initialize (or reset) the rewriter. At initialization, the fol
lowing information is needed: lists of function symbols, rewrite rules and strat<
annotations, an indication of the default strategy (currently one of the co-
INNERMOST or JUSTINTIME) and an indication whether hash tables shoulc

370 J. van de Pol

#include "aterm2.h"

#define INNERMOST 1

#define JUSTINTIME 2

void JIT_init(ATermList funs, ATermList rules, ATermList strategy,
int default_strat, char withhash);

ATerm JIT_normalize(ATerm t);

void JIT_flush(void);

void JIT_ assign(Symbol v, ATerm t);

void JIT_enter(void);

void JIT_leave(void);

void JIT_clear(void);

int JIT_level(void);

Fig. 2. JITty — Application Programmer’s Interface

#include "jitty.h"
int main(int argc, char* argv[]) {

ATinitialize(argc,argv); /* initialize ATerms */
JIT_init(ATparse("[£(1),g(2),a(0),b(0)]"), /* signature */
ATparse("[frule([x],f(x),g(x,b))," /* rule for f */

" grule([x],g(x,x),£(a))]"), /* rule for g */

ATparse (" [f ([frule,1])1"), /* strategy annotation */
INNERMOST, /* default strategy */

0); /* without hashing */

ATprintf ("%t\n",JIT_normalize (ATparse("£(b)"))); }

Fig. 3. Example program of using JITty

(0 = no, 1 = yes). JIT_normalize(t) returns the normal form of ¢ in the current
environment. JIT_flush() is used to clear the hash table, in case it becomes too
memory consuming. The other functions are used to manipulate the global envi-
ronment, as explained in Section 4. JIT_enter () and JIT_leave() can be used
to enter or leave a new block. JIT_clear() undoes all bindings in the current
block. JIT_assign(v,t) assigns term ¢ to variable v (represented as Symbol
from the ATerm library). Finally, JIT level() returns the current level.

References

1. S. Blom, W. Fokkink, J. Groote, I. van Langevelde, B. Lisser, and J. van de Pol.
#CRL: A toolset for analysing algebraic specifications. In Proceedings of CAV 2001,
LNCS 2102, pages 250-254, 2001. See also http://www.cwi.nl/"mcrl/.

2. M. van den Brand, H. de Jong, P. Klint, and P.A. Olivier. Efficient Annotated
Terms. Software ~ Practice & Ezperience, 30:259-291, 2000.

3. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing
OBJ. In J. Goguen and G. Malcolm, editors, Software Engineering with OBJ:
algebraic specification in action. Kluwer, 2000.

4. J. van de Pol. Just-in-time: On strategy annotations. In B. Gramlich and S. Lucas,
editors, Electronic Notes in TCS, volume 57, 2001. (Proc. of WRS 2001, Utrecht).

